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We investigate the effect of long-range diffusive mixing on stochastic processes taking place on low-
dimensional catalytic supports. As a working example, the cyclic lattice Lotka-Volterra �LLV� model is used
which is conservative at the mean-field level and demonstrates fractal patterns and local oscillations when
realized on low-dimensional lattice supports. We show that the local oscillations are synchronized when a
weak, long-range, diffusive process is added to LLV and global oscillations of limit cycle type emerge. This
phenomenon is demonstrated as a nonequilibrium phase transition and takes place when the mixing-to-reaction
rate p �order parameter� is above a critical point pc. The value of the critical point is shown to depend on the
kinetic parameters. The global oscillations in this case emerge as a result of phase synchronization between
local oscillations on sublattices.
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I. INTRODUCTION

Synchronization of interacting systems is a key phenom-
enon of nature and is often discovered in the background of
self-organization processes in physics, chemistry, biology,
and other sciences �1�. Having been discovered first in en-
sembles of periodic self-sustained oscillators, it was spread
later to chaotic systems �2�. There are two basic definitions
for synchronization in complex oscillations:

�i� Generalized synchronization, a deterministic intercon-
nection between the time series of two coupled subsystems A
and B, xA�t�=G�xB�t�� �3�.

�ii� Phase synchronization, the phenomenon of instanta-
neous phases locking �4� which is also characterized by fre-
quency adjustment �5� and coherence increase �6� in oscilla-
tors spectra.

Phase synchronization can be formally defined as locking
between instanteneous phases �A,B of the time series in the
subsystems A and B: limt→���A�t�−�B�t���M, where M is
a positive value. This relation signals the presence of corre-
lation between phases, while instantaneous amplitudes re-
main uncorrelated. In particular, phase synchronization is a
classical property for self-sustained oscillators and may take
place in the presence of noise �7� and even in dynamical
systems driven by external noise �8�.

While most early works concentrated on synchronization
in deterministic networks of oscillators, recent attention has
been devoted to synchronization of stochastic interactions
between units with several discrete states which can demon-
strate oscillation behavior as cooperative phenomenon
�9–12�. In Ref. �10� the authors demonstrate that when the
probability of transitions between states �which plays the
role of coupling� crosses a critical point, global synchroniza-
tion occurs on the lattice. In Refs. �11,12� the authors study
the synchronization in two reactive processes, the rock-
scissors-paper �RSP� game and the susceptible-infected-
refractory �SIR� system, respectively. Both cases are treated
as small world networks, where the permanent or temporal
network connectivity �internal disorder� provides the cou-
pling between the different units. Synchronization in the RSP

and SIR cases arises when the disorder rate in the networks
exceeds a certain critical threshold.

In this study we provide a different example of an exter-
nal coupling mechanism on a lattice model, which can also
lead to global synchronization. This mechanism is a long-
range diffusion between elements of the lattice. The param-
eter of the diffusion can be interpreted as a strength of cou-
pling between subparts of the lattice. In our case coupling
increase also leads to oscillating behavior of the system,
which is demonstrated as the analog of a Hopf bifurcation in
ordinary differential equations. In contrast to �11,12�, the dif-
fusive mechanism proposed here is a result of an external
random force and not an internal disorder of the network.
More detailed analysis showed that the observed oscillations
are a result of a phase synchronization process taking place
between oscillations on separate parts of the lattice. Thus, the
pure stochastic model with discrete phase space on the large
scale demonstrates typical oscillatory phenomena: Limit-
cycle behavior and phase synchronization.

As a model we consider a lattice compatible system, evi-
dent in chemical reactions and population dynamics, where
periodicity is attributed to the process dynamics while local
coupling is provided by the support �e.g., in heterogeneous
catalytic reactions, diffusion, and population dynamics�
�13,14�. A short description of the system, its mean-field
�MF� model, and results of Monte Carlo �MC� simulations
are presented in Sec. II. In Sec. III we investigate the prop-
erties of the system under long-range diffusion both on mi-
crolevel and macrolevel. Section IV describes process of
phase synchronization between local oscillations on the lat-
tice. In the concluding section the main results are summa-
rized and open problems are presented.

II. LLV MODEL

The choice of the system under study was motivated by
problems in population dynamics and reactive dynamics tak-
ing place on low-dimensional or catalytic supports. The
search for a simple, lattice compatible model, with center
type of mean-field behavior led us to the choice of the lattice
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Lotka-Volterra �LLV� system for this study �15,16�. As a
support for the LLV model a square regular lattice containing
N=L�L sites is considered, with every site being in one of
three possible states �occupying species�: X, Y or S. For each
site the transitions from one state to another are governed by
the interactions with the neighbors according to the follow-
ing scheme:

X + Y→
k1

2Y , �1a�

Y + S→
k2

2S , �1b�

S + X→
k3

2X , �1c�

where ki , i=1,2 ,3 are the kinetic parameters. The basic rule
for the realization of schemes �1a�–�1c� is that a randomly
chosen site at state X transforms to state Y with probability
proportional to k1 provided that a randomly chosen neighbor
is in state Y. The same rules hold cyclically for the other
states.

If the lattice represents an autocatalytic support, X and Y
can be interpreted as chemical species, which occupy the
lattice sites, while S may represent a vacant site. According
to this interpretation, step �1a� is autocatalytic reaction, while
steps �1b� and �1c� denote desorption and adsorption of Y
and X particles, respectively. Alternatively, the reactive
scheme may represent a population dynamic model where
step �1a� represents nonlinear interaction between species X
and Y, while steps �1b� and �1c� represent death of Y species
and birth of X species, respectively.

From the dynamical point of view the LLV model can be
described by the MF rate equations �16�,

ẋ = − k1xy + k3x�1 − x − y� , �2a�

ẏ = k1xy − k2y�1 − x − y� , �2b�

where x and y are the relative concentrations. The phase
space of system �2a� and �2b� has four equilibrium points:
Three saddle points P1�0;0�, P2�1;0�, P3�0;1�, and a center
P4�k2 /K ;k3 /K� �K=k1+k2+k3�. The saddles and their invari-
ant manifolds, M1, x=0; M2, y=0; M3, x+y=1 form a closed
triangular contour. This contour bounds the region in the
phase space where chemical or biological interpretation
makes sense. Inside the contour, oscillations remain finite;
outside the contour, all trajectories go to infinity. If the initial
conditions are chosen within the range 0�x, y, s�1, the
model demonstrates conservative periodic oscillations and
the phase portrait of the system consists of an infinite num-
ber of closed trajectories around the center P4 �16�.

The MF approach does not take into account the local
nature of the processes on the lattice and therefore can only
serve as a very rough model for dynamical processes on a
support. An alternative tool for modeling the LLV scheme is
the kinetic Monte Carlo �KMC� simulation in which the tran-
sition of a lattice site from one state to another at a particular
time step depends on the precise state of the first neighbors

on the lattice. The microscopic simulation rules are given in
detail in Ref. �16� but a brief recapitulation of them is as
follows:

�i� At every elementary time step �ETS� one lattice site
and one of its neighboring sites are randomly selected.

�ii� If the selected site is in state X and the neighbor in
state Y the selected particle transforms to Y with probability
p1=k1 /max�k1 ,k2 ,k3�, otherwise it remains in the original
state.

�iii� Similar rules hold for the states Y and S, cyclically,
with respective probabilities p2,3.

In the KMC process N=L�L ETS constitute 1 Monte
Carlo step �MCS�. During 1 MCS all lattice sites have on the
average one chance to react. As the simulation process
progresses the spatial distributions of X and Y particles
change from one MCS to another, providing the evolution of
the system at the microscopic level. To make a bridge be-
tween the microlevel and the macrolevel it is reasonable to
use the x and y variables which represent the average partial
concentrations,

x = NX/N, y = NY/N , �3�

where NX�Y� is the number of X�Y� particles.
KMC simulations demonstrate that the time evolution of x

and y contains two stages: �a� A short oscillatory, transient
process followed by �b� stochastic oscillations around some
steady state value. This last value is very well predicted from
the MF approach, being equal to the fixed point P4. In Fig.
1�a� the evolution of initial values x0=x�0� and y0=y�0� far
from the point P4 are depicted. A transient process is ob-
served after which the values tend to the neighborhood of the
equilibrium point P4. The intensity of the steady state oscil-
lations sensibly depends on the lattice size. This can be seen
in Fig. 1�b� where the time series of the x concentration on
the 512�512 sites lattice �solid line� and on its 128�128
sites sublattice �dashed line� are depicted. A more detailed
analysis of the intensity �the square root of the dispersion,
�x� dependence on the lattice size evidences that it is reduced
as

�x � 1/	N . �4�

The correspondent plot is depicted in Fig. 2 in the log-log
scale. Oscillations tend to zero when the lattice size tends to
infinity. Consequently, in the KMC process P4 behaves as a
dissipative, stable focus point which attracts all trajectories
started throughout its basin. This disagreement between re-
sults of MF and KMC approaches has been noted in a num-
ber of works �see, for example, �16,17�� while the detailed
analysis of them is presented in �18�. However, in any finite
window at any stage of the above KMC processes, the con-
centration oscillations are preserved locally on the system
�local oscillators� �16�.

It is noted here, that the MF regime can be achieved in the
KMC simulations via long-range reactive coupling between
randomly selected distant units. In the KMC simulations, this
means that the chosen particles do not interact with their
immediate neighbors but equiprobably with any randomly
selected particle within a distance lr �lr is defined as the
minimum number of steps which is necessery to achieve two
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distant points on the lattice�. In Fig. 3 the KMC results of the
LLV are shown for parameters values k1=k2=k3=1.0, lattice
size L=512, and reactivity range lr=300. Starting from three
different initial conditions �as indicated on the graph� the
system performs oscillations whose amplitude depends on
the initial conditions. This is clearly center-type behavior as
in the case of the mean field. This is not an unexpected result
since the most significant condition for the validity of the
mean-field description is that every particle interacts equally
with all other particles in the system. This clearly holds in
the case of the long-range reactive coupling and thus the MF
regime is approached.

Let us try a different coupling process on the lattice to
synchronize its behavior. It is obvious that synchronization
cannot be achieved by increasing the probabilities pi: Simul-
taneous change of all pi does not lead to any qualitative
changes in the behavior but only in a change of the time
scale of the processes. Alternatively, by changing only one of
the pi, i=1, . . . ,3 can result in fast poisoning of the finite
lattice by some component �X or Y�. A possible way for
physically motivated coupling is to add a short-range �local�
or a long-range �global� diffusive coupling on it. The last
case is the subject of the next section.

III. GLOBAL OSCILLATION IN THE LLV SYSTEM
WITH EXTERNAL LONG-RANGE DIFFUSION

In an attempt to synchronize the local oscillators on the
lattice, global diffusive coupling is introduced, in the form of
exchange of state between randomly chosen lattice sites.
This additional process, independent of the original scheme
�1a�–�1c�, may be a result of an external shuffling allowing
for immediate states exchange between distant lattice units.
In the case of autocatalytic surface reactions, some transport
agent that is not involved in the reactions may be responsible
for the mixing. In the case of population dynamics such a
mixing may be realized by the natural migration processes.

To define more precisely this long-range diffusion mecha-
nism, it is necessary to define first the relative frequency of
diffusive-to-reactive events, p,

p = �n/N� , �5�

where n is the number of diffusive steps in 1 MCS, while N
is the total number of reactive attempts in 1 MCS. The dif-
fusion range ld is also defined. This means that particles can
diffuse randomly to any site within the range �1, ld�, note that
1� ld�2L �2L is the maximum distance on the L�L lat-
tice�. In our research we used the maximum possible value of
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FIG. 2. Dependence of the intensity of x—oscillations on the
lattice size L in the log-log scale. Parameters values are k1=0.6,
k2=0.8, k3=1.

0 100 200 300 400 500
time (MCS)

0

0.2

0.4

0.6

0.8

1

1.2

x

x
0

= 0.9, y
0

= 0.01
x

0
= 0.1, y

0
= 0.2

x
0

= 0.4, y
0

= 0.4

FIG. 3. �Color online� Long-range reactive coupling in the LLV
model. The lattice size is L=512, the reactivity range is lr=300 and
the parameters are k1=k2=k3=1.0. Initial conditions are indicated
on the graph.
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FIG. 1. �a� Phase portraits on the x-y plane for different initial values: ��� x=0.4, y=0.4; ��� x=0.45, y=0.45; ��� x=0.2, y=0.2; ���
x=0.1, y=0.1; ��� x=0.1, y=0.7. �b� Time series of the x concentration on the whole lattice �solid line� and on a subpart of 128�128
elements �dashed line�. Parameter values are k1=0.6, k2=0.8, k3=1.
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ld, ld=2L. Additional properties of the long-range diffusion
process considered here are as follows:

�i� For every exchange event two lattice sites are ran-
domly and independently chosen and their states are ex-
changed.

�ii� The distance between the exchanged particles must be
less or equal to the diffusion range ld.

�iii� The exchange is independent of the sites’ positions.
If the probability p→1, then total mixing is attained,

while for p→0 the mixing is weak and the behavior de-
scribed above and in Ref. �16� is observed.

Although the long-range diffusive coupling does not
change directly the average concentrations x and y, as this
study demonstrates, it causes dramatic changes in the system
dynamics both at the microlevel and macrolevel. Consider-
ing the global behavior, the time series x�t� for p=0 �green
line� and p=0.03 �black line� are depicted in Fig. 4�a�. It is
clear that global, almost periodic oscillations with suffi-
ciently large amplitude are observed, even for relatively low
values of p. This amplitude no longer depends on the size of
the lattice but characterizes the oscillation itself.

The shape of the oscillations in Fig. 4�a� resembles the
one expected from the MF prediction. However, while the
MF oscillation is conservative, this KMC oscillation is of
different nature. After an initial, transitory stage �for times
�0–300 MCS� the system reaches a stable, almost periodic
attractor �steady state�. In Fig. 4�b� such phase portraits are
shown for p=0.01 �curve marked by �� and p=0.02 �curve
marked by ��.

For finite lattice sizes the shape of these attractors looks
like a noisy limit cycle or like a weak chaotic attractor in an
ordinary differential equation �ODE� system. When the lat-
tice size tends to �, the stochastic fluctuations vanish and the
dynamics tend to a periodic, limit cycle, global oscillation.

Next the dependence of the global oscillations on the pa-
rameter p are examined. In Fig. 5 the square of the amplitude
�dispersion, �2� of the oscillations as a function of p is plot-
ted, for different values of k1. When the rate p is sufficiently
small, there are no observable changes of the system dynam-
ics and the system behaves as the ordinary LLV model �16�.
Global oscillations are not observed and there is only a small
noise background which becomes smaller with increasing
lattice size. Then, at the critical point pc the focus loses its

stability and global oscillations appear in its neighborhood.
Increasing further the diffusion-reaction rate p� pc results in
monotonous linear growth of the dispersion. In this regime
the oscillation amplitude increases as the square root of the
difference between the instantaneous value of p and its criti-
cal value,

��p� � 	p − pc. �6�

The global oscillations in the lattice KMC simulations
spring exactly as a limit cycle after the supercritical Hopf
bifurcation in the theory of dynamical systems. Increasing p
further increases the cycle thus shifting it from the central
point P4 in the direction of the triangle contour of the invari-
ant manifold defined by the saddle points P1 , P2 , P3. During
this process the shape of the oscillation changes, becoming
more relaxationlike �see curve ��� in Fig. 4�. If the mixing is
strong enough the trajectories approach closely the contour
and at the particular value of the mixing rate they collide
with it, leading to poisoning of the lattice by one of the three
components. Figure 5 depicts three curves of �2�p� for dif-
ferent values of parameter k1. The critical point pc is seen to
depend on the parameters ki of the system. More detailed
analysis demonstrates that pc depends on the imbalance de-
gree of the parameters ki. The greater the difference of pa-
rameters, the smaller the critical value of p. In this case the
poisoning of the lattice occurs at lower p values. Additional
analysis of the global oscillations has shown that the ampli-
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FIG. 4. �Color online� �a� The time series of x�t� for the lattice without diffusion �green curve� and with weak diffusion, p=0.03 �black
dashed curve�. �b� Attractors for different values of p. Straight lines depict the triangle of the invariant manifolds in �2a� and �2b�. Parameters
of the system are k1=k2=k3=1, L=1024.
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FIG. 5. Dispersion of x�t� versus the diffusion-reaction rate p for
different values of k1. Other parameters are fixed in k2=k3=1.
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tude � and the critical value of p do not depend on the lattice
size if the last is sufficiently large, while for small lattices,
L�300, there is lattice size dependence.

The essential change of the global behavior evidently
must be a consequence of changes at the microlevel. In the
case of p=0 �see Fig. 6 and �16�� from an initial random
distribution spontaneous clustering takes place and cluster-
cluster competition, where the clusters interact with one an-
other through their boundaries, while their interiors remain
intact. Even in the case of small rate p� pc, the cluster bor-
ders seem to be the main interaction regions, with a number
of small encapsulations that appear inside the clusters due to
weak mixing. These encapsulations do not contribute signifi-
cantly in the dynamics for large system sizes. Thus for p
� pc local regions on the lattice oscillate out-of-phase and
this results in suppression of the global oscillations.

After crossing pc the behavior of the lattice essentially
changes. In Fig. 6 almost the entire lattice is shown to be
periodically colored by one type of species indicating that
the lattice now behaves synchronously.

IV. PHASE SYNCHRONIZATION
BETWEEN OSCILLATIONS ON SUBLATTICES

It is evident, that global oscillations on the lattice must be
a consequence of synchronization between oscillations of its
subparts. To understand this process the average concentra-
tions of X species on two sublattices �denoted as A and B�,
xA�t� and xB�t�, are calculated as a function of time. The
lattice size is L=1024 while the sublattices have linear sizes
l=64. The corresponding time series is plotted in Fig. 7.

When the mixing is absent, the oscillations xA and xB look
asynchronous �Fig. 7�a��. Additional mixing leads to increas-
ing their amplitudes and to phase synchronization in the re-
gime of global oscillations. This can be seen in Fig. 7�b� as
an overlap of the maximums of both time series. The fact of
phase synchronization can be demonstrated more clearly if
we compute the time dependence of their phase difference.
In Fig. 8 the phase difference 	�=�A−�B between sublat-
tices A and B is plotted, defined as

�A�B� = arctg
 yA�B� − �yA�B��

xA�B� − �xA�B��

 . �7�

For p�=0�� pc�0.007 the local oscillators demonstrate ran-
dom phases, and the phase difference curve has the form of
Brownian motion, indicating uncorrelated phases. In the re-
gime of global oscillations, for p� pc, the phase difference is
bounded near zero, so the phases of the local oscillators are
locked demonstrating the classical phase synchronization
phenomenon. The intermediate case is shown in the figure
for p=0.007, which is very close to the threshold value. Here
we see the imperfect phase synchronization, when time in-
tervals of phase locking are randomly interrupted by inter-
vals where the phase difference slips.

The phase synchronization of oscillations can be demon-
strated also if we introduce a parameter mismatch between
the two sublattices. For this purpose we will consider one of
the kinetic parameters, k1, as a random, sublattice dependent
value,

(b)(a)

FIG. 6. Lattice snapshots at successive time intervals �from the left-hand to the right-hand sides�: 0 MCS, 1000 MCS, 1500 MCS for �a�
p=0.00 and �b� p=0.016. Parameters values are k1=0.6, k2=0.8, k3=1.
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FIG. 7. �Color online� Time series of oscillations on two different sublattices: xA�t� �solid green line� and xB�t� �dashed black line� for �a�
p=0 and �b� p=0.02. Parameter values are k1=1.0, k2=1.0, and k3=1.0.
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k1
�i,j� = f�i, j� , �8�

where f is a random function with values homogeneously
distributed in the range �0; 1�, i , j=1,2 , . . . are discrete vari-
ables denoting the sublattice indices. In our case the N
=1024�1024 sites lattice has been divided to 16�16 sub-
lattices, which are characterized by their own value of
k1

�i,j��i , j=1,2 , . . . ,16�. As in the preceding paragraph we fol-
lowed oscillations on the chosen sublattices �A� and �B�,
which, in our case, had the following parameter values: k1

A

=0.376 and k1
B=0.703. Since the value of k1 influences the

basic frequency of oscillations, in the system without mixing
�or with p� pc� all sublattices are characterized by their own
frequency. Therefore, the difference between the phases of
the partial oscillators increases with time �see curve 1 in Fig.
9� and this reflects that the average periods of the oscillations
are no longer equal. This case is related to the absence of
phase synchronization between local oscillations. Increasing
of the mixing parameter p towards the critical point results in
imperfect phase synchronization. It means that in the tempo-
ral behavior of the phase difference we can observe intervals
of synchronous behavior when the phases remain locked,
which are interrupted by intervals when the instantaneous
phases slip �see curve 2 in Fig. 9�. Then, at sufficiently large
p, phases remain locked at any moment of time �curve 3 in
Fig. 9�. This is the stage of perfect phase synchronization.

V. CONCLUSIONS

In conclusion, the influence of an external, random, long-
range diffusive force on distributed, interacting particle sys-

tems was studied, using as working example the lattice
Lotka-Volterra �LLV� model on the square lattice.

As was previously shown, while the LLV model demon-
strates MF conservative �noise-sensitive� oscillations, when
it is is realized on a lattice support via KMC simulations the
system is divided into local oscillators which oscillate out of
phase that results in the suppression of global oscillations.
The introduction of a long-range reactive coupling between
different parts of the lattice leads to the expected MF, center-
type behavior. In this study, it is shown that, when a weak
random, long-range diffusive coupling is introduced the be-
havior changes drastically. The local oscillators are phase
synchronized producing stable, global oscillations. It was
demonstrated that this nonequilibrium, phase synchroniza-
tion emerges as a Hopf-type bifurcation, above a critical
diffusion-to-reaction rate pc. This critical point is shown to
depend on the kinetic parameters.

Preliminary results indicate that the present behavior is
maintained in other conservative, center-type systems which
are lattice compatible. That is, diffusion drives the noise sen-
sitive system into a stable limit cycle via a Hopf-like bifur-
cation, when a system parameter crosses a critical point. Fur-
ther studies are needed to investigate the influence of
diffusive coupling in dynamical systems with different phase
space characteristics, such as limit-cycle or chaotic mean-
field behavior.
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